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Purpose

1. ldentify and lay out a roadmap for the implementation of
engineered deep residual stress which can be used iIn the
calculation of initial and recurring inspection intervals for fatigue
and fracture critical aerospace components.

2. Highlight gaps In _the state-of-the-art and define how those gaps
will be filled.

3. Define the most effective way to document reguirements and
quidelines for fleet-wide implementation.




VIsion

Within 3-7 years develop a framework for fleet-wide implementation
of a holistic, physics-based approach for taking analytical advantage
of deep residual stresses, induced through the Cold EXxpansion
process, Into the calculations of Initial and recurring inspection
Intervals for fatigue and fracture critical aerospace components.
Utilizing this foundation, also address other deep residual stress

Inducing processes, like Laser Shock Peening and Low Plasticity
Burnishing.
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Working Group Structure
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Fatigue Crack Growth Analytical Methods

- Purpose — Develop and document best practices for the integration of deep
engineered residual stresses into the fatigue crack growth prediction methods
used with the Damage Tolerance paradigm

. Recent Initiatives

- Round Robin for Cx Holes - Engineering Implementation of RS
- Best Practices Document - Near Surface RS
- Multi-Crack Effects - Overloads/Underloads/Load-X

. Qutcomes

- Successful collaboration for round robin — lessons learned / best practices / journal article
- Draft Best Practices Document — community collaboration

- Non-dimensional behavior of residual stress



Fatigue Crack Growth Analytical Methods

Round Robin SIS
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Fatigue Crack Growth Analytical Methods

. ldentified Gaps

- Remote / partial crack closure

- Near surface residual stress understanding
- Countersunk holes
- Load transfer impacts

- Crack growth rate data (Negative R)

. Future Initiatives

- Follow-on Round Robin

- Crack closure
- Near surface residual stress

- Engineering implementation of RS (Manage-to-RS?)
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Validation and Verification Testing

Purpose — Provide material characterization data through standardized and
experimental testing which can be utilized for the V&V of mathematical models
used to represent the physics of material and component response

Recent Initiatives

Effects of peak compression and tension - Focused regions of crack growth testing

Applied Stress Ratio (R) impacts - Development of crack growth rates for

corner cracks
Qutcomes

Development and publishing of test data

Presentations at ASTM, ASIP or other professional conferences



Validation and Verification Testing

. Underloads

Crack Length [Mandrel Entrance Face), inch

10
—— 403-43-Ba [27.9/0/0PEN)  —d— 4AD3-17-Ba [27.9/0/0PEN)  —8— 4D03-45-Ba [27.9/-12.6/0PEN)
e A 13-13-Ba [27.9500OFEN)
= (27 ' —=— a03-16-Ba [27.8/-12.56/0PEN) — — 4D3-39-Ba [27.9/0/FILL) — i 403-10-Ba [27.2/0/FILL)
—-—-d03-41-Ba [2T.90-12.6/FILL] - —-403-47-Ba [27.9/-12.6/FILL)
—8— £03-47-Ba [27.5/0/OREM)
1.E-04
—— A13-5-Ba [27.9/-12 5JOPEN)
—=— 203-35-Ba [27.5/-12.6/0PEN)
o 1.E-05
gv]
=
- = 403-35-Ba [27.3/0/FILL) -
—
(=]
£
— i~ 203-40-Ba [27.2/0/FILL) _E
w
= 1E-0B
- == 403-41-Ba [27.8/-12.6/FILL)
= d03-43-Ba [27.5/-12.6/FILL]
|:|_|:| 1 1 1 1 1 1 1 | 1IE_{]? I
4] 10000 200000 A00000 A00000 SO0000 s00000 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Cycles " - . ] . . : . B
Crack Length {Mandrel Entrance Face), inch

15




Validation and Verification Testing

. Identified Gaps

- Available fatigue test data to compliment residual stress measurement conditions

- Negative-R test data

- Future Initiatives
- Test data to support 2" Round Robin

- Sensitivity analysis for negative R data
- Part-through crack da/dN vs. AK data

- Evaluate available data pools to support analysis group for evaluations



Residual Stress Process Simulation

- Purpose — Develop methods and standards for the determination and
validation of residual stresses via FEA simulation

. Recent Initiatives

- Assessing different material hardening models

- Benchmarking of current state-of-the-art, adjusting model parameters as compared to
measurement

- Determination of model validation requirements, macro to micro scale

. Qutcomes

- Best practices document for process simulation

- Best practices regarding material hardening model

- FEA validation requirements document



Residual Stress Process Simulation

. Validation Program

- Perform experiments to capture surface and through -thickness strains for FEA process
simulation validation : .

- Strain gages

- Strain :"_“h""*"_?_:
- Measurement techniques Gages LUNA Fiber
in Blue .
- Surface strain
. . fual|[ il O :
- Digital Image Correlation (DIC) o T
| DIC Regi -
- Fiber optics et g
|‘f

- Through-thickness measurement techniques
- High energy X-ray Diffraction (XRD)

- Neutron Diffraction

- Contour Measurements



Residual Stress Process Simulation

Identified Gaps

Appropriate material hardening models/data for Cx holes

Defined verification and validation requirements

Future Initiatives

Development of material hardening models

Defined verification and validation requirements

Residual Hoop Stress (ksi)
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Data Management & Quality Assurance

- Purpose — Develop requirements and standardized formats for the
acquisition, storage, and analysis of data which enables confidence in the
quality of the process to introduce engineered residual stress.

. Recent Initiatives

- Development of additional quality assurance tools

- Documentation requirements

- Qutcomes
- Productionized FastenerCamm™ tool in development




Data Management & Quality Assurance

FastenerCam™ Development
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Data Management & Quality Assurance

. ldentified Gaps

Identification of data fidelity requirements

Auditable and guantitative measurement of Cx process

Defined acceptance levels of variability and uncertainty

Data storage location, capacity, etc.

. Future Initiatives

- Protocols to capture Cx data and store appropriately

- AFSC involvement / buy-in — capturing data



Effect of RS on NDI Methods

- Purpose — Quantify the impacts of deep engineered residual stresses on NDI
detection capability and reliability

. Recent Initiatives

- Quantify shear-wave ultrasonic detection capability impact for fatigue cracks at Cx holes
o Quantification of “Dead Zone” within the RS field via the Cx process
o Develop standard POD correction factors

- Quantify effects of engineered RS on crack closure and NDI of open surfaces
o Effects of LSP on detectability of fatigue cracks in aluminum fittings

. Qutcomes

- Update to NDI Structures Bulletin — EN-SB-008-012
- Combined NDI techniques for RS situations
- Best practices




Effect of RS on NDI Methods

L SP Effects on NDI

Surface Eddy Current
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Effect of RS on NDI Methods

Identified Gaps

UT “dead zone” at Cx holes

Fastener installation impacts on UT fatigue crack detectability

Future Initiatives

Develop UT probability of detection corrections factors
Map UT “dead zone” for Cx holes

Best practices document

Investigate fastener installation impacts on UT detectability
Updates to NDI Structures Bulletin
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Residual Stress Measurement

Purpose — The development and validation of residual stress measurement

methods as a means of defining a stress state which can be integrated into life
calculations

Recent Initiatives

L egacy vs. new manufacture residual stress - Near surface residual stress
Residual stresses at cracked Cx holes - Contour method inter-laboratory
uncertainty guantification
Outcomes

egacy vs. new manufacture comparisons in work
Quantifying impacts of cracks on residual stress
Micro-slotting procedure

Cross-method residual stress validation efforts



Residual Stress Measurement

L_egacy vs. New Cx Comparisons
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Residual Stress Measurement

. ldentified Gaps

- Near-bore residual stress understanding

- Mapping results from simple coupon to complex structure

- What’s necessary for quality assurance?

. Future Initiatives

- Near-bore follow-up measurements

o Geometrically “large” coupon program
o Combination of methods
o Standard work

- Validation test coupons (Cx — ream — cycle)
- Pooled statistics on RS at Cx holes — Involve UQ group



Risk Analysis

- Purpose — Support deterministic damage tolerance analysis development
through quantifying the uncertainty in critical variables, and develop of a
methodology for incorporating residual stress fields into probabilistic damage

tolerance assessments.

- Recent Initiatives & Outcomes
- Incorporation of residual stresses into DARWIN and SMART/DT analyses

- Uncertainty quantification of contour method measurements

. Qutcomes

- Predictive processes of residual stress from material processing

- Fitting of residual stress response surface
- Initial sensitivity studies for determination of critical parameters



Risk Analysis

Uncertainty quantification of contour method measurements

Quantifying the uncertainty in single measurements and in repeat measurements for two

materials

Investigating the impact of repeatability uncertainty on analysis and comparing to test

Comparison of Effect of One Repeatability Standard to the Average Residual Stress Field of
the Left and Right Side of the Hole for 7075-T651 Material Using Tabular Material File -
Coupon - 4.00 inch Wide, 0.25inch Thick, 0.50inch Diameter Hole, Far Field Stress =
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Risk Analysis

. ldentified Gaps

- How can we use the UQ work performed to date for problems with other materials,
geometries, etc.?

- Which of the many available surrogate/response surface modeling methods would be most
applicable to this problem?

- Which inputs are the most important for understanding the impact of residual stresses?

. Future Initiatives

- Determine how to extend contour method UQ work to all potential scenarios

- Determine best surrogate modeling methods for residual stress surfaces

- Calculate deterministic and probabilistic sensitivity for the inputs to determine which
parameters are critical



Summary

. Diverse group spanning many disciplines and industries collectively
coming together to:

- Define roadmap for implementation of engineered residual stresses
- Highlight the gaps in the state-of-the-art
- Documenting lessons learned and best practices

- Define the most effective way to document requirements and guidelines

. If you’re interested in participating let us know!!!
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